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Abstract. Sequencing contents, like tasks, hints, and feedbacks, is an open issue
for Intelligent Tutoring Systems. The common approach is based on domain anal-
ysis by experts, who characterize each content with skills involved and a difficulty
level. In addition, Machine Learning based sequencers require a specific dataset
collection to create users’ models and a sequencing policy, which needs to be
tested online with strong ethical requirements and a high number of users. In this
paper we design a simulated learning environment with customizable scenarios.
We also show that a performance prediction method can be used to crate offline
fully personalized students’ models and sequence contents without domain en-
gineering/authoring effort. The performance prediction method is enhanced by a
score-based policy inspired by Vygotsky’s concept of Zone of Proximal Devel-
opment and shows promising results compared to curriculum based policies in
the designed simulated environment.

Keywords: Sequencing, Performance Prediction, Intelligent Tutoring Systems,
Matrix Factorization

1 Introduction

Intelligent Tutoring Systems (ITS) are more and more becoming of crucial importance
in education. Apart from the possibility to practice any time, adaptivity and individu-
alization are the main reasons for their widespread availability as app, web service and
software. The system generally is composed of an internal user model and a sequencer,
that, according to the given information, sequences the contents with a policy. On that
side many efforts have been put into Bayesian Knowledge Tracing (BKT), starting with
not personalized and single skills user modeling. The limit of this problem formula-
tion became clear soon, also because the contents evolved together with the technology.
Multiple skills contents were developed, e.g. multiple step exercises and simulated ex-
ploration environment for learning. In order to maintain the single skill formulation
systems fell back on scaffolding, i.e. a built in structure was inserted in order to clearly
distinguish within the content between the different steps/skills required. As a conse-
quence, the engineering and authoring effort to develop an ITS increased exponentially
obliging a meticulous analysis of the contents in order to subdivide and design them in
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clearly separable skills.

Other efforts have been put into adaptive sequencing. Its main approach, based on Re-
inforcement Learning, can be reconnected to robotics, which has an availability of ac-
curate simulators and tireless test subjects. The same cannot be said for ITS where,
generally, apart from adults, also children of any age are involved.

In this paper we propose a novel method of sequencing based on Matrix Factorization
Performance Prediction and Vygotsky’s concept of Zone of Proximal Development.
The main contributions are:

1. A content sequencer based on a performance prediction systems that (1) can be set
up and preliminary evaluated in a laboratory, (2) models multiple skills and indi-
vidualization without engineering/authoring effort, (3) adapts to each combination
of contents, levels and skills available.

2. Simulated environment with multiple skill contents and students’ knowledge rep-
resentation, where knowledge and performance are modeled in a continuous way.

3. Experiments on different scenarios with direct comparison with informed baseline.

The paper is structured as follows: in Section 2 one can find a brief state of the art
description, in Section 3 the explanation of the sequencer problem, in Section 4 the
simulated learning process, in Section 5 the performance based policy and predictor, in
Section 6 the experimental results and least the conclusions.

2 Related Work

Many Machine Learning techniques have been used to ameliorate ITS, especially in
order to extend learning potential for students and reduce engineering efforts for de-
signing the ITS. The most used technology for sequencing is Reinforcement Learning
(RL), which computes the best sequence trying to maximize a previously defined re-
ward function. Both model-free and model-based [12,1] RL were tested for content
sequencing. Unfortunately, the model-based RL necessitates of a special kind of data
sets called exploratory corpus. Available data sets are log files of ITS which have a fixed
sequencing policy that teachers designed to grant learning. They explore a small part of
the state—action space and yield to biased or limited information. For instance, since a
novice student will never see an exercise of expert level, it is impossible to retrieve the
probability of a novice student solving some contents. Without these probabilities the
RL model cannot be built [2]. Model—free RL, instead, assumes a high availability of
students on which one can perform an on-line training. The model does not require an
exploratory corpus but needs to be built while the users are playing with the designed
system. Given the high cost of an experiment with humans, most authors exploit sim-
ulated single skill students based on different technologies like Artificial Neural Net-
works or self developed student models [16,12]. Particularly similar to our approach
is [12], where contents are sequenced with a particular model-free RL based on the
actor critic algorithm [9], which was selected because of its faster convergence in com-
parison with the classic Q-Learning algorithm [20]. Unfortunately, RL algorithms still
need many episodes to converge and will always need preliminary trainings on simu-
lated students.



Vygotsky based Sequencing without Domain Information 3

Our developed content sequencer is based on student performance predictions. An ex-
ample of state of the art method is Bayesian Knowledge Tracing (BKT) and its exten-
sions. The algorithm is built on a given prior knowledge of the students and a data set
of binary student performances. It is assumed that there is a hidden state representing
the knowledge of a student and an observed state given by the recorded performances.
The model learned is composed by slip, guess, learning and not learning probability,
which are then used to compute the predicted performances [4]. In the BKT extensions
also difficulty, multiple skill levels and personalization are taken into account separately
[24,13,14,5]. BKT researchers have discussed the problem of sequencing both in single
and in multiple skill environment in [8]. In a single skill environment the most not mas-
tered skill is selected, whereas in the multiple skill this behavior would present a too
difficult content sequence. Consequently, the contents with a small number of not mas-
tered skills are selected. Moreover, [8] points out how in ITS multiple skill exercises
are modeled as single skill ones in order to overcome BKT limitations. We would like
to stress that the sequencing requires an internal skills representation and consequently,
together with the performance prediction algorithm, is domain dependent.

Another domain dependent algorithm used for performance prediction is the Perfor-
mance Factors Analysis (PFM). In the latter the probability of learning is computed
using the previous number of failures and successes, i.e. the representation of score is
binary like in BKT [15]. Moreover, similarly to BKT, a table connecting contents and
skills is required.

Matrix Factorization (MF) is the algorithm used in this paper for performance predic-
tion. It has many applications like, for instance, dimensionality reduction, clustering
and also classification [3]. The most common use is for Recommender Systems [10]
and recently this concept was extended to ITS [21]. We selected this algorithm for sev-
eral reasons:

1. Domain independence: ability to model each skill, i.e. no engineering or authoring
effort in individuating the skills involved in the contents.

2. Having comparable results with BKT latest implementations [22].

3. Possibility to build the system with a common data set, i.e. without an exploratory
corpus.

4. Small computational time on a 3rd Gen Ci5/4GB laptop and Java implementation:
0.43 s for building the model with already 122000 lines, negligible time for perfor-
mance prediction.

3 Content Sequencing in ITS

The designed system consists of two main blocks. The first one is the environment and is
represented by the students playing with the ITS. First step toward a working prototype
requires testing in a laboratory. Since optimal control problems can only be evaluated
online, i.e. the sequence optimality can be measured only after a student worked with
it, we designed a simulated learning process that is described in Sec. 4. We excluded
the possibility of collecting an exploratory corpus because making practice with very
easy and very difficult exercises in random order could be frustrating for the students,
who could be children. After a first validation with real students, only a common data
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Fig. 1: System structure in a block diagram.

set collection will be necessary to set up the system with new contents, giving also the
possibility to calibrate the environment and later use it for new sequencing methods.
In this paper we use the word content to refer to the activities a student interacts with,
although our main focus here is task sequencing. Taking advantage of the simulated
learning process characteristics described, we can later interpret contents as different
ITS elements. As explained in [17], a content could be a hint, a feedback, a topic or a
task, whose sequencing could in each case take advantage of the designed system as we
will discuss later.

The second block consists of different modules, i.e. the available contents, the previous
interactions of the students with the system (log files), the student Performance Predic-
tor and the Sequencer Policy. We chose a specific Performance Predictor and policy, but
nothing is against using other ones in the future. When a student plays with the system
the next exercise is proposed to him by the sequencer according to a policy. The Perfor-
mance Predictor needs the log files of students playing with the contents considered to
predict their scores in the next contents. The policy is applied in an adaptive way thanks
to the information on the predicted scores shared between Performance Predictor and
Sequencer. In the following Sections we will describe the different blocks represented
in Fig. 1.

4 Simulated Learning Process

Given the necessity of preliminary evaluation in a laboratory, it is of crucial importance
to have a simulated environment able to model reality with a certain degree of fidelity.
For our system we required a score and skill representation between 0 and 1, to be able
to test following aspects:
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Possibility to use score as single success indicator for sequencing

2. Ability to model a multiple skill domain and students’ knowledge by the perfor-
mance predictor

3. Possibility to change number of skills involved to test flexibility

4. Possibility to test also noisy processes

We designed a simulated student based on the following assumptions. (1) A content is
either of the correct difficulty for a student, or too easy, or too difficult. (2) A student
cannot learn from too easy contents and learns from difficult ones proportionally to his
knowledge level. (3) It is impossible to learn from a content more than the required
skills to solve it. (4) The total knowledge at the beginning is different than zero. (5)
The general ability on connected skills helps solving and learning from a content. The
last assumption is more plausible because we assume to sequence activities of the same
domain. For instance, in order to solve a fraction addition, a student needs more related
skills: multiplication, fraction expansion etc. It is unlikely for a student to do a fraction
expansion without knowing how multiplication works. At the same time the knowledge
of multiplication will help him solving the steps on fraction expansion.

A student simulator is a tuple (S,C,y,T) where, given a set S C [0,1]X of students,
s; is a specific student described as a vector @'. The latter is of dimension K, where
K is the number of skills involved. C C [0,1]X is a set of contents, where c; is the
Jj—th content, defined with a vector y; of K elements representing the skills required.
¢; x = 0 means student’s i skill level k is zero, whereas @; x = 1 means having full ability.
7:S x C — Sis a function defining the follow-up state ¢'*! = ¢’ 41 of a student 5; € S
after working on contents ctj. In particular S and C are the spaces of the students and
contents respectively. Finally, a function y defines the performance y(@;,y;). y and ©
can be formalized as follows:

(05, W)k =Y (Qik, W jk ) Ok
yi=ye (D

where N
oy” = max(yjx — @i, 0) )

and € is proportional to the beta distribution B (p,q). We selected p and g in order to
have y ~ B (y, (52), where 67 is the variance, i.e. the amount of noise. We chose the beta
distribution because it is defined between zero and one as the score. Consequently it will
not change the codomain of the y function. The characteristic of the formulas are the
following. (1) The performance of a student on a content decreases proportionally to his
skill deficiencies w.r.t. the required skills. (2) The student will improve all the required
skills of a content proportionally to his performance and his skill-specific deficiency
up to the skill level a content requires. (3) As a consequence it is not possible to learn
from a content more than the difference from the required and possessed skills. (4) A
further property of this model is that contents requiring twice the skills level that a
student has, i.e. |y} > 2| @,||, are beyond the reach of a student. For this reason his
performance will be zero (y = 0). With a simple experiment without noise, we can show



6 Vygotsky based Sequencing without Domain Information

the plausibility of the designed simulator. We inserted values in Eqs. 1 as follows. Let us
consider a system with two skills and represent the student knowledge as ¢ = {0.3,0.5}.
As it is possible to see in Tab. 1 with the increase of the content difficulty the learning

Cj de| y Tk
[0.1,0.1]]0.2| 1 [0,0]
0.5,0.6]{1.1|0.617([0.12,0.0617]
0.5,0.7]{1.2|0.515| [0.1,0.1]
[0.9,0.9]|1.8| 0 [0,0]
Table 1: Simulated learning process with two skills. A simulated student with ¢ = {0.3,0.5}
scores y and learning 7 after interacting with different contents c;.

increases and the score decreases until ||y;|| > 2‘ (0] JH The maximal difficulty level is

equal to the number of skills since a single skill value cannot be greater than one.

5 Vygotsky Policy and Matrix Factorization

5.1 Sequencer

The designed sequencer is defined as follows. Let C C C and S C S be respectively a set
of contents and students defined in Section 4, dc_/. be the difficulty of a content defined as
de; = ZkK:o Yk ¥:SxC— [0,1] be the performance or the score of a student working
on the content, and 7 be the number of time steps assuming that the student is seeing one
content every time step. The content sequencing problem consists in finding a policy:

n*: (Cx[0,1]) = C. 3)

that maximize the learning of a student within a given time 7 without any environ-
ment knowledge, i.e. without knowing the difficulties of the contents and the required
skills to solve them. A common problem in designing a policy for ITS is retrieving the
knowledge of the student from the given information, e.g. score, time needed, previous
exercises, etc. The previous mentioned data types are just an indirect representation of
the knowledge, which cannot be automatically measured, but needs to be modeled in-
side the system. Hence, integrating the curriculum and skills structure is the cause of
the high costs in designing the sequencer. In this paper we try to keep the contents in the
Vygotskys Zone of Proximal Development (ZPD) [23], i.e. the area where the contents
neither bore or overwhelm the learner. We mathematically formalized the concept with
the following policy, that we called Vygotsky Policy (VP):

¢ = argmin, |y, — ' (c)| 4)

where yyj, is the threshold score, i.e. the score that keeps the contents in the ZPD. The
policy will select at each time step the content with the predicted score 7 at time t most
similar to y;,. We will discuss further in the experiment session how to tune this hyper
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parameter and its meaning.

The peculiarity of the VP is the absence of the difficulty concept. Defining the difficulty
for a content in a simulated environment as ours is easy, because we mathematically
define the skills required. In the real case it is not trivial and quite subjective. Also the
required skills are considered as given in the other state of the art methods like PFM
and BKT, where a table represents the connection between contents and skills required.
Without skills information not only BKT and PFM performance prediction cannot be
used in our formalization, also sequencing methods [8] have no information to work
with.

5.2 Matrix Factorization as Performance Predictor

Matrix Factorization (MF) is a state-of-the-art method for recommender systems. It
predicts which is the future user ratings on a specific items based on his previous rat-
ings and the previous ratings of other users. The concept has been extended to student
performance prediction, where a student next performance, or score is predicted. The
matrix Y € R™*" can be seen as a table of n. total contents and ng students used
to train the system, where for some contents and students performance measures are
given. MF decomposes the matrix Y in two other ones ¥ € R"*F and & € R™*F, so
that Y ~ ¥ = W®. ¥ and ® are matrices of latent features. Their elements are learned
with gradient descend from the given performances. This allows computing the miss-
ing elements of ¥ and consequently predicting the student performances (Fig. 2). The
optimization function is represented by:

min Y (yi; — $i;)> + AP + 1| ®]*) (5)
w_/!(Pije(c

where one wants to minimize the regularized squared error on the set of known scores.
The prediction function is represented by:

P
Vij = M+ pej + ugi + Z(PiTp‘Ifjp (6)
p=0

where u, u. and yg are respectively the average performance of all contents of all stu-
dents, the learned average performance of a content, and learned average performance
of a student. The two last mentioned parameters are also learned with the gradient de-
scend algorithm.

The MF problem does not deal with time, i.e. all the training performances are consid-
ered equally. In order to keep the model up to date, it is necessary to re-train the model
at each time step. MF has a personalized prediction, i.e. a small number of exercises
needs to be shown to each student in order to avoid the so called cold—start problem.
Although some solutions to these problems have been proposed in [21,11], we will
show in the experiment session that these aspects do not affect the performance of the
system, neither they reduce its applicability. From now on we will call the sequencer
utilizing the VP policy and the MF performance predictor VPS, i.e. Vygotsky Policy
based Sequencer.
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Students Students
Contents
Contents 0.1 0.87/0.2 0.1 ({0.1/0.87/0.2 |0.85
0.95| 0.1 0.12/0.95/ 0.1 0.85|0.95
—
1105 0.3 10.79(0.83| 1 |05
0.35 0.2 1 |0.85/0.350.2

Fig. 2: Table of scores given for each student on contents (left), completed table by the MF algo-
rithm with predicted scores (right).

6 Experiment Session

In this section we show how the single elements work in detail. We start with the stu-
dent simulator, continue with the VP and end with some experiments with performance
prediction in different scenarios and noise. A scenario is represented by a number of
contents n., a number of difficulty levels n;, a number of skills ny, and a number of
students for each group n,'. All the first experiments will have no noise, i.e. j = y.

6.1 Experiments on the Simulated Learning Process

To prove the operating principle of the simulator we tested basic sequencing methods in
a particular scenario. The one we chose is described in Fig. 3, with ny; =7 and n. = 150.
For representation purposes we created the contents with increasing difficulty, so that
IDs implicitly indicates the difficulty?. The scenario mimics an interesting situation for
sequencing, i.e. when more apparently equivalent exercises are available. The two poli-
cies we used are (1) Random (RND), where contents are selected randomly, and (2)
the in range policy (RANGE), where each second content is selected in difficulty order.
This strategy is informed on the domain because it knows the difficulty of the contents.
We initialized the students and contents skills with an uniform random distribution be-
tween 0 and 1. Again for representation purposes we show the average total knowledge
of the students that is represented by average of the students skills sum at each time
step. We chose to perform the tests on 10 skills, i.e. the maximal total knowledge pos-
sible is equal to 10. We considered the scenario mastered when the total knowledge of
the student group is greater than or equal to the 95% of the maximal total knowledge.
Fig. 4 shows the total knowledge of two groups of n, = 200 students, one group was
trained with random policy the other one with the in range policy. RANGE is charac-
terized by a low variance in the learning process. RND, instead, has a high variance
because the knowledge level of the students at each time step is given by chance. It
is shown that the order in which the student practices on the contents is important for
the total final learning. Fig. 4 also shows how the practice on too many contents of
the same difficulty level, after a while, saturates the knowledge acquisition. All these
aspects demonstrate that the learning progress is plausibly simulated.

' The MF was previously trained with ng students that were used to learn the characteristic of
the contents. Consequently, the dimensions of the MF during the simulated learning process
are: ¥ € R™*P and & € R=+m)%P 5o that ¥ ~ ¥ = ¥,

2 A content with ID 2 is easier than a content with ID 100, see Fig. 3



Vygotsky based Sequencing without Domain Information 9

6.2 Sensitivity Analysis on the Vygotsky Policy

In order to evaluate the VP we created two more sequencing methods that exploit infor-
mation not available in reality. The best sequencing knows exactly which is the content
maximizing the learning for a student, for this reason we called it Ground Truth (GT).
Vygotsky Policy Sequencer Ground Truth (VPSGT), instead, uses the Vygotsky Policy
and the true score y of a student to select the following content. GT and VPSGT can be
considered the upper bound of the sequencer potential in a scenario. In order to select
the correct value of y;;, we plot the average knowledge level at time r = 11 for the policy
with different y,;,. From Fig. 5 one can see that the policy is working for y;;, € [0.4,0.7],
this because of the relationship between Eqs. 1 of the student simulator. In a real en-
vironment the interpretation of these results is twofold. First we assume y,; will be
approximately the score keeping the students in the ZDP. Second, from a RL perspec-
tive, this value would allow finding the trade—off between exploring new concepts and
exploiting the already possessed knowledge. Moreover, as one can see in Fig. 6, the
policy obtains good results if compared with GT for some y,;, but for others the policy
is outside the ZPD and the students do not reach the total knowledge of the scenario. In
some experiments we noticed that the width of the curve in Fig. 5 decreased so that the
outer limits of the y,, interval create a sequence outside the ZPD. As consequence we
selected the value y,, = 0.5 that was successful in most of the scenarios.

6.3 Vygotsky Policy based Sequencer

The scenario we selected for the tests with the VPS has n, = 150, n; = 6, n; = 10 and
n; = 400. In order to train the MF-model a training and test data set need to be created.
We used ny = 300 students who learned with all the contents in order of difficulty. We
used 66% of the data to train the MF-model and the remaining 34% to evaluate the Root
Mean Squared Error (RMSE) for selecting the regularization factor A and the learning
rate of the gradient descent algorithm. We performed a full Grid Search and selected the
parameters shown in Tab. 2. The sequencing experiments are done on a separate group
of n; students. In order to avoid the cold start problem 5 contents are shown to them
and their scores added to the training set of the MF. For 7' = 40 the best content c;‘ is
selected with the policy VP for the n; students, using the predicted performance j ;- In
order to avoid the deterioration of the model, after each time step the model is trained
again once all students saw an exercise. A detailed description of the algorithm of the
sequencer can be found in Alg. 1, where Yj is the initial data set.

As one can see in Fig. 7 the VPS selects the first content similarly to RANGE. Then
the prediction allows to skip unnecessary contents speeding up the learning. Once the
total knowledge arrives around 95%, the selection policy cannot find contents that fit
to the requirements. Consequently the students learn as slow as the RND group, as one
can see from the saturating curve. In Fig. 8 GT selects the contents in difficulty order
skipping the unnecesary ones. The average sequence of the VPS, instead, is also with
approximately increasing difficulty but in an irregular way. This is due to the error in the
prediction performance. In conclusion the proposed sequencer gains 63% over RANGE
and 150% over RND. The presented experiments show how the MF is able, without
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Parameters Choice
Learning Rate 0.01
Latent Features 60
Regularization 0.02
Number of Iteration| 10
Table 2: Parameters MF

Algorithm 1: Vygotsky Policy based Sequencer

Input: C, Yy m,s;, T
Train the MF using Yp;
fort=11t T do
for Allc € Cdo
| Predict § (cj,s:) Eq. 6;
end
Find ¢* according to Eq. 5;
Show ¢* to s; with Eq. 1;
Add y (s;,c"™) to ¥y
Retrain the MF; // Corrects over- or underestimation by the MF

%X N AN N B W N =

10 end

10

Diffucuity, or sum of the required skills

o 50 100 150
Exercise number

Fig. 3: Scenario: content number and difficulty level.
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RND
RANGE

I I ]
50 100 150
Time Step

Fig. 4: Comparison between RANGE and RND. Average skills sum, i.e. knowledge, over all the

students with variance

VPSGT
GT

Average Total Knowledge at time t=11

Fig. 5: Policy selection, i.e. the performance of the Vygotsky policy with different y,;, at the same
time step. Different groups of students learned with the Vygotsky policy with y,; values going
from 0.1 to 0.9. As shown in the figure the knowledge levels change according to the y,; selected.

Policy

Description

Random (RND) Contents are selected randomly

In Range (RANGE) Each second content is selected

in difficulty order.

Ground Truth (GT) Selects the contents according

to which is the one maximizing
the learning.

(VPSGT)

Vygotsky Policy based |Chooses the next content using
Sequencer Ground Truth|the policy and the real score of

a student.

Vygotski Policy based |[Chooses the next content using
Sequencer (VPS) the policy and the predicted

score of a student.

Table 3: Sequencers Description
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Y

yth
yth=0.8
yth=0.9
yth=1 [~

Average Total Knowledge with different yth
(4]

i
o] 5 10 15 20 25 30
Time Step

Fig. 6: Effects of the different y,;, on the final knowledge of the students. The learning curves of
the student groups that learned with the different Vygotsky policies.

Average Total Knowledge

i i i i i i
o 5 10 15 20 25 30 35 40 a5 50 55
Time Step

Fig. 7: Average Total Knowledge. How the average learning curve of the students changes over
time.

VPS
GT

Exercise Number

o 5 10 15 20 25 30 35 40 45 50 55
Time Step

Fig. 8: Average sequence selected by the GT and the VPS. The VPS approximate the optimal
sequence that GT computes thanks to the real skills of the students.
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domain information, to model the different skills of students and contents and partially
mimics the best sequence, which is the one selected by GT in Fig. 8.

6.4 Advanced Experiments

In this section we want to show the correct working of the sequencer changing the pa-
rameters of the scenario n; and n. and later adding noise. In order to do so we consider
the percentage of gain of VPS with respect to RANGE considering a specific time step
t = 30 with n; = 10 and ny; = 6. As one can see in Fig. 10 the gain obtained by the
sequencer depends on the available number of contents. Since in RANGE each second
content is selected, with n. < 60 there are not enough contents for all time steps. Our
sequencer can adapt without problems to the situation. The optimal point for the in
range policy is when n. = 60 because there is exactly the necessary number of contents
for the student to learn. When n. > 60 the students see many unnecessary contents and
consequently learn slower. Fig. 9 with n. = 60, t = 30 and n; = 6 shows the dependen-
cies between skills and gain. The experiments demonstrated a high adaptability of the
sequencer to the different scenarios.

Last we experimented the results robustness adding noise, i.e. § = ye. We experimented
with 62 € [0,0.5]. As one can see in Fig. 11 with 6> = 0.1 the Vygotsky sequencers are
still able to produce a correct learning sequence but more time is required. The VPSGT
is the one that suffered the most from the introduction of noise, probably related to the
selection of yy,.

30 in %

Gain over in Range Policy t

50 100 150
Number of Skills

Fig.9: Gain over RANGE policy varying n;. The gain is measured at a specific time step in
percentage, considering the average knowledge level of the two groups of students, one practicing
with the RANGE sequencer and one with the VPS.

6.5 Outlook

VPS has an advantage in comparison to other state of the art methods because it does not
require a detailed analysis of the skills involved. Nevertheless, some steps are required
for the VPS to be integrated within a learning platform. This aspect has been addressed
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300

30 in %
N
a
3
T
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3
T

150

Gain over in Range Policy t

50

_50 L L L L I I
0 50 100 150 250 300 350 400

Number of Contents

Fig. 10: Gain over RANGE policy varying n.. The gain is measured at a specific time step in
percentage, considering the average knowledge of the two groups of students, one practicing
with the RANGE sequencer and one with the VPS.

10 T T

T
RND

RANGE

VPSGT

VPS

Average Total Knowledge
@
T
i

I I
o 10 20 30 40 50 60 70 80 90
Time Step

Fig. 11: Effect of noise in the simulated learning process. Beta distribution noise with 62 = 0.1.
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in [17] for a commercial ITS, where a first offline feasibility discussion was done.
Thanks to VPS domain independence, conceptual integration required minor changes.
For technical integration we utilized the work in [19] where a novel minimal invasive
integration for a Machine Learning-powered sequencer was presented. Another open
question is how to select y;,. In [17], we explained how this value should be tailored to
the available contents exploiting the passing score set by expert. In [6,7] is proposed to
personalize the threshold value by means of the output of an affect recognition applied
to students speech input. The proposed rule based policy suggests to increase yth if the
student felt under-challenged and decrease it if he felt over-challenged. Alternatively a
combination of MF and emotion recognition could be designed.

7 Conclusions

In this paper we presented VPS, a sequencer based on performance prediction and Vy-
gotsky’s concept of ZPD for multiple skills contents with continuous knowledge and
performance representation. We showed that MF is able dealing with the most actual
problems of Intelligent Tutoring Systems, like time and personalization, retrieving au-
tomatically skills required and difficulty. We proposed VP, a performance based pol-
icy that does not require direct input of domain information, and a student simulator
that helps in preliminary off-line evaluation. The designed system achieved time gain
over random and in range policy in almost each scenario and is robust to noise. This
demonstrates how the sequencer could solve many engineering/authoring efforts. Nev-
ertheless, an experiment with real students is required to better confirm the validity of
the assumptions of the simulated learning process. A different evaluation is required for
the performance prediction based sequencer. Some work was done in this direction and
was mentioned in the previous section. In conclusion, to use VPS, no content analysis
is required, since the MF will reconstruct the domain information, thanks to continuous
score representation. This will allow the integration of the sequencer in ITS whose con-
tent analysis is not affordable. With the results obtained in this paper we plan to extend
such an approach also to other intervention strategies to further reduce the engineering
efforts in ITS after an complete evaluation on real students.
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