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ABSTRACT

Machine Learning methods for Performance Prediction in
Intelligent Tutoring Systems (ITS) have proven their ef-
ficacy; specific methods, e.g. Matrix Factorization (MF),
however suffer from the lack of available information about
new tasks or new students. In this paper we show how
this problem could be solved by applying Transfer Learning
(TL), i.e. combining similar but not equal datasets to train
Machine Learning models. In our case we obtain promis-
ing results by combining data collected of German fractions’
tasks (517 interactions, 88 students, 20 tasks) with their non-
exact translation of a previously American US version (140
interactions, 14 students, 16 tasks). In order to do so we also
analyze the performance of MF based predictors on smaller
ITS’ samples evaluating their usefulness.

Keywords
Transfer Learning, Intelligent Tutoring Systems, Matrix Fac-
torization, Vygotsky Policy Sequencer

1. INTRODUCTION

One of the main uses of Educational Data Mining in Intel-
ligent Tutoring Systems (ITS) is Performance Prediction,
which aims to ameliorate the student’s model by under-
standing whether a student mastered a specific set of skills
or not. Specific methods, e.g. Matrix Factorization (MF),
suffer from the lack of available information about new ITS
tasks or new students imposing challenging requirements on
organizing trials. This happens because the algorithm is
personalized, i.e. there is one model for each student in-
teracting with the system and one for each task one can
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practice with. If no data are available for one task or for
one student no prediction can be computed, this problem is
called the cold-start problem. Moreover, first data for new
tasks in I'TS applications are obligatorily collected in a spe-
cific sequence, which is generally fixed or rule-based. As a
consequence more interaction data are available for the first
tasks in the sequence whereas just a few are available for
the last ones making the prediction for specific tasks more
challenging. In the FP7 iTalk2Learn project' we developed
a domain independent sequencer [9] for one of our use cases
based on MF Performance Prediction. One of this use cases
is a German translation of Fraction Tutor (FT) a web-based
Cognitive Tutor for fractions developed by Carnegie Mel-
lon University?. Our data collection for the German version
(88 students, 20 tasks, 517 interactions) represents, to the
best of our knowledge, one of the smallest dataset used to
train a MF based recommender for Performance Prediction
in ITS. We also possess the data collected with the original
US American version (16 tasks, 14 students and 140 inter-
actions), which, according to common practice, should be
discarded. In this paper we want to:

e Show, that we can use two different but comparable
datasets (the German and English ones) to ameliorate
Performance Prediction.

e Analyze in detail the effects of a small dataset on the
performances of MF used as performance predictor.

e Propose a practical solution to the data collection to
reduce data sparsity.

The paper is structured as follows. the second and third
section describe the state of the art and the theory behind
the performance predictors we used. In Sec. 4 the data
collection, translation and preprocessing is described. In the
Experiment Section we discuss the usefulness and measure
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the performances of MF based predictors. Then we conclude
the Section combining the English and German datasets to
evaluate the feasibility of Transfer Learning approaches to
exploit generally discarded data in ITS.

2. RELATED WORK

As we did not have access to the required skills information
in (7, 8], MF and the VPS sequencer presented in [9] are used
for Performance Prediction. MF has many applications, its
most common use is for Recommender Systems and recently
this concept was extended to Performance Prediction and to
sequencing problems in ITS [10, 9], but all experiments were
done with simulated students’ interactions or offline exper-
iments. In [7], we showed how the VPS sequencer could be
integrated and worked in a large commercial ITS. A similar
analysis on MF was done in [5] where Performance Predic-
tion was tested on a small dense dataset (each student saw
each task). The performance predictors were standard Col-
laborative Filtering techniques, where the best one perform-
ing resulted to be Biased Matrix Factorization (see Section
3.1 for more details). In this paper, we possess even less
interactions. Not only the students did not interact with
all available tasks, but sometimes they also solved less than
three tasks. We try to solve this problem with Transfer
Learning (TL)3. In contrast to classical Machine Learning
methods, TL methods exploit the knowledge accumulated
from auxiliary data to facilitate predictive modeling con-
sisting of different but similar patterns in the current data
[2]. Auxiliary data could mean additional information de-
scribing the state of the system and/or data collected with
a second slightly modified version of the same system (e.g.
using equal movies from different movie rating datasets and
transfer the knowledge [4]). In this case correctly done trans-
fer of knowledge, i.e. using similar but not equal datasets, is
required and could improve the performance of predictors in
classification and regression tasks ([4]) by considering pre-
viously unused data. This approach becomes particularly
helpful when recollection is expensive or impossible. How-
ever TL was never applied to ITS data. Consequently, in
Sec. 5.3 we evaluate the feasibility of applying TL to our
use case to get a better Performance Prediction.

3. MATRIX FACTORIZATION BASED PRE-
DICTORS

We use MF to predict the students performance. The matrix
Y € RSXT can be seen as an incomplete table of T tasks and
S students. This matrix is used to train the system. MF is
the approximation of this incomplete matrix by decompos-
ing it in two smaller matrices W € R%*¥ and H € RT*¥,
The elements of the two matrices are called latent features
and are learned with gradient descend.

Using the available entries (e.g. the score recorded from pre-
vious tasks) the missing entries can be computed by means
of very fast optimization algorithms. In our experiments we
use MF and a simple variation of MF, the Biased Matrix
Factorization (BMF) which uses three additional variables:
the global average performance p, the student (user) bias bs
and the task (item) bias b;. For predicting students perfor-
mance the following equation is used (for MF without the

3From now on we will refer to Machine Learning’s Transfer
Learning as TL in order not to mix it with the students’
transfer learning
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bold variables):

K
Dt,s :M+bs+bt+zwskhtk7 (1)

k=1

t represents a task, s a student, k the latent features and
K represents the total number of latent features. The opti-
mization function is represented by:

. ~ 2 2 2 2 2
i ST (g = i) A (WU + LHIP 4 el + o)
@

s,teD

with D the set of collected task student interactions. The
final goal of the algorithm is to minimize the Root Mean
Squared Error (RMSE) on the set of known scores.

In order to evaluate the performances of BMF and MF gen-
erally simple models like Global Average (GA, using the
Global Average Score (GAS) of the students as prediction
value) are used. To check which is the contribution of the
Biases of the BMF to the performance of the MF we use
the model called Biases, which has Eq. 2 as optimization
function and Eq. 1 as prediction function, but with K = 0.

4. DATA COLLECTION AND ITS CHARAC-
TERISTICS

In this section we describe the ITS we used, the data collec-
tion and what was done to connect Fraction Tutor and MF
approaches.

4.1 Data collection and sequencing

We have carefully translated the English/US American FT
tasks into child-friendly German and iteratively adapted to
German students’ needs. As a result of the translation and
adaption process the US American and the German tasks
are not 100% identical and we are using TL according to
the definition in Sec. 2 and exploiting the knowledge from
the auxiliary Englis dataset to ameliorate the German Per-
formance Prediction.

We used three different sequences to have an equal number
of interactions for each task, each sequence using a different
order of task categories (6 categories). The interleaved se-
quence starts with one task of each category (hierarchically)
and repeats this process. The second sequence refers to the
so called blocked practice sequence where first all tasks of
category I need to be solved, then category II and so on.
Last is the mixed sequence that has a coincidental order.
In order to collect log data and train the MF for the FT we
conducted a study with students (i.e. fifth graders) in class-
rooms (i.e. 21-28 students per class) in Germany. Students
of three classes (88 students) of a German Gymnasium could
interact with FT which was integrated in the iTalk2Learn
platform *.

The US American data were collected when students (14 of
one class) interacted with the US American version of FT [3].
To these students tasks were proposed in a single sequence.
All of them completed at least half of the sequence.

4.2 Dataset characteristics

4The iTalk2Learn platform is a Plug-In platform used to
integrate different components. In our case: FT tasks,
database, and simple fixed sequencer.

373



0 61 02 02 o1 0Of
<

Figure 1: a) German scores b) English scores, c)
combined German and English scores

For exploring the task cold-start problem for the German
and English datasets (described in Sec. 1) we assigned to
each task IDs from 0 to 23, where German and English tasks’
(0-15) translations have the same ID. As a result we have: 14
interactions for IDs 0—6, 11 for ID 7 ((7;11)), (8;10), (9;8),
(10;6), (11;2), (12;2), (13;1), (14;1), (15;1). For the Ger-
man data the interactions are more spread out because of
the three different sequences which were used: (0; 38),(1; 59),
(2;36), (3:0), (4573), (5:47), (6:5), (T:0), (8:22), (9:29), (10:3),
(11;0), (12;22), (13;32), (14,0),(15;0), (16:24), (17;32), (18;12)
(19;26), (20;29), (21;28), (22;0), (23,2). There are IDs only
used in the English data: (3,7,11,15). The tasks (11, 14, 15,
22, 23) have less than 2 interactions for the German and En-
glish datasets and are removed in the preprocessing. Thanks
to the different sequences we have a sufficient number ([6])
of interactions for most tasks. For the English experiments
we removed the last tasks, since there were too few interca-
tions.

For the students’ cold-start problem the dataset can be con-
sidered as sparse. The English dataset should be less in-
fluenced by the students’ cold-start problem, because each
student interacted at least with 7 tasks.

In order to have a continuous score measure as we had in [9]
we used following equation to compute the score:

#hints

score=1— | ————"——
" ( #totalnumhints

+ (#incorrect * O.l)) 3)
If the score is less than zero we set the score to 0 avoiding
negative scores. For the German (a)), English (b)) and Ger-
man+English (c)) data we computed the score Histogram
to measure how much the data is unbalanced (See Fig. 1).
Both datasets are very unbalanced but by combining the
two datasets we can achieve a more balanced distribution.
We will explain in the Experiment Section how this is influ-
encing the models’ performances.

5. EXPERIMENTS

To split the data in test and train set we used Leave One
Out (LOO) for each student; which is a common approach
to split for small datasets (here we used the last task seen by
the student). To evaluate the error we measure the RMSE
averaged over five experiments to avoid the influence of the
random initialization of the model parameters on the model
performances. The standard deviation of the error for the
models prediction lies around 1072, which is normal for
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HL GA Biases MF BMF

S>3 | 0337 | 0.390 | 0.405 | 0.386

ST 0336 ] 0371 | 0.385 | 0.370

S5 [ 0325 | 0525 | 0.337 | 0.534

>6 [ 0310 | 0321 | 0.328 | 0.522 HL [ GA | Biases | MF MF

> 7 | 0333 | 0.358 | 0.355 | 0.355 >7 | 0285 | 0.240 | 0.235 | 0.235

>8 [ 0345 | 0.208 | 0.206 | 0.202 >8 | 0205 | 0.241 | 0.229 | 0.218

2 02 26 @@ o3 27 s s a) b)

Figure 2: a) RMSE German, b) RMSE English
AL >S3 | >4 ] 55 ] 56 | >7 | =8
GAS 0.673 | 0.673 | 0.673 | 0.673 | 0.673 | 0.673

e or 55 s 1 # test students 88 72 53 38 26 22

# interactions 517 501 482 467 455 451

Table 1: GA and test size German data
movie recommender datasets and small datasets. For each

experiment we used the models described in sec. 3 (GA, MF,
BMF). For finding the best hyperparameters we used Grid
Search (learning rate: [0.01,0.09] stepsize 0.01; regulariza-
tion: [0.001,0.009] stepsize 0.001, [0.01,0.09] stepsize 0.01,
[0.1,0.9] stepsize 0.1; num. iterations: 100 — 300 stepsize 20;
num. latent features: 2—100 stepsize 10). Moreover for each
experiment we computed the performance Global Average
Score (GAS) and report the number of students whose data
are used.

5.1 Cold-start problem, MF Utility and Intra-

Student Variance

For our experiments we studied different History Lengths
(HL), i.e. the number of interactions the student had with
the ITS, and we deleted the students with a HL less than 2.
Starting with HL > 3 we continued removing the students
with HL < 4, HL < 5, etc. until HL < 8. We kept the
same train data and just removed the test data, so the test
set shrinks while increasing the HL requirements. GAS and
number of test students are reported in Tab. 1. Table a) in
Fig. 2 lists the RMSE for the German dataset.

The performances as well as the behavior of Biases, BMF
and MF are coherent with the one reported in [10]. For
HL < 5 Biases, MF and BMF have not sufficient informa-
tionto predict the performances (see a) in fig. 2). Keeping
students with HL < 5 in the train influenced BMF neg-
atively. The small gain between BMF and Biases can be
explained with the performances of MF which are almost
always worse than GA ones. This is coherent with MF and
BMF behaviors where generally Biases give a strong con-
tribution to the model performances. We can say that the
Performance Prediction of GA was positively influenced by
having all data in the train set, since it can be computed
on a more robust statistic. BMF and MF are in general in-
fluenced by data of students with short history negatively
at the beginning, although, for students with a longer his-
tory, these data can be used to ameliorate performances.
Next we evaluate the performances of Biases/MF/BMF on
an even smaller dataset: the English one. The performances
also of GA are quite good, although Biases, MF, and BMF
clearly outperform it (see b) in Fig. 2). GA prediction abil-
ity is due to the fact that the dataset is highly unbalanced;
with a majority of samples with 0 score the probability that
a sample of this dataset is similar to the GAS is higher.
Fig. 2 shows that BMF outperforms the Biases and the re-
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HL GA | Biases [ MF BMF
>3] 0506 | 0.391 | 0.407 | 0.389
>4 10500 | 0.375 | 0.389 | 0.375
>5 10522 ] 0333 | 0.342 | 0.331
>6 ] 0516 | 0322 | 0.336 | 0.321 HL GA | Biases [ MF | BMF
> 7] 0523 ] 0.346 | 0.362 | 0.344 > 7] 0564 | 0.277 | 0.288 | 0.273
>8] 0514 ] 0.293 | 0.285 | 0.288 >8] 0564 | 0283 | 0.310 | 0.275

Figure 3: a) RMSE GerEng, b) RMSE EngGer

sults are better than the German ones. According to our
previous experience, we think that the difference in the per-
formances (comparing experiments with same HL to avoid
the cold-start problem contribution) is due to the variance
between the different elements of the students’ population
under study. In our previous work [1] we showed the negative
impact of intra-class variance in the performance of classi-
fiers with small data samples. This applies in our opinion
to the case because the intra-student variance of the Ger-
man data, collected in three classes from different schools,
should be higher than the intra-student variance of the En-
glish dataset that was collected in one class only.

5.2 Transfer Learning

To test the possibility to use English data to ameliorate the
German prediction performances, we combined the English
and German datasets as follows. In this experiment the data
from an English task and its translation are considered by
the MF as the same task. When combining the German and
English datasets (See Table a) in Fig. 3), the performances
of GA drop to approximately 0.5 because the most samples
are almost equally distributed between 0 and 1 with a GAS
around 0.56. To prove feasibility of TL we ran more experi-
ments starting with the best results of the previous Sections.
We added the English data to the German train set Table a)
in Fig. 3), where the addition of the English data in training
is always taking to a contribution for HL > 6.

The same amelioration cannot be seen when adding the Ger-
man data to the English train, since adding the German
data increases the intra-student variance worsening the En-
glish model performances (Table b) in Fig. 3, and Tab. 2).

BMF + HL >3 >4 >5 > 6 > 7 > 8
German 0.386 | 0.370 | 0.334 | 0.322 | 0.355 | 0.292
GerEng 0.389 | 0.375 | 0.331 | 0.321 | 0.344 | 0.288
English / / / / 0.235 | 0.218
EngGer / / / / 0.273 | 0.275

Table 2: Comparison of BMFs perfromances for all ex-
periments.

6. CONCLUSIONS

In this paper we proposed a practical solution to the data
collection to reduce data sparsity, by proposing tasks with
different sequences. Moreover, we analyzed in detail the ef-
fects of a small dataset on the performances of MF used as
performance predictor. Thanks to these analyses it was also
possible to determine the utility of MF based performance
predictors and sequencing in new ITS’ tasks. Considering
the Utility of BMF in comparison to GA, before having at
least 7 interactions for a student it would be better to use
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GA as performance predictor. With using TL we already
get better results for BMF with HL > 5. This should hold
theoretically also for the use of the VPS, although an ex-
periment with online model update is required for a full
evaluation. Finally, we proposed to exploit generally dis-
carded data exploiting the concept of TL. As future work
we will investigate more advanced methods to perform TL
on small datasets and try to ameliorate performances of the
first BMF predictions (HL < 5).
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