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Abstract—Usually, in intelligent tutoring systems the task
sequencing is done by means of expert and domain knowledge.
In a former work we presented a new efficient task sequencer
without using the expensive expert and domain knowledge.
This task sequencer only uses former performances and decides
about the next task according to Vygotsky’s Zone of Proximal
Development, that is to neither bore nor frustrate the student.
We aim to support this task sequencer by a further automat-
ically to gain information, namely students affect recognized
from his speech input. However, the collection of the data from
children needed for training an affect recognizer in this field is
challenging as it is costly and complex and one has to consider
privacy issues carefully. These problems lead to small datasets
and limited performances of classification methods. Hence,in
this work we propose an approach for improving the affect
recognition in intelligent tutoring systems, which uses a special
structure of several support vector machines with different
input feature vectors. Furthermore, we propose a new kind
of features for this problem. Different experiments with two
real data sets show, that our approach is able to improve the
classification performance on average by 49% in comparison
to using a single classifier.

Keywords-intelligent tutoring systems; affect recognition;
support vector machine (SVM); speech features; affect recog-
nition performance improvement; plait structure;

I. I NTRODUCTION

Nowadays, intelligent tutoring systems are an important
tool for supporting the education of students for instance
in learning mathematics. The main advantages of intelli-
gent tutoring systems are the possibility for a student to
practice any time and anywhere, as well as the possibility
of adaptivity and individualization for a single student.
Usually, an adaptive intelligent tutoring system possesses
an internal model of the student and a task sequencer which
decides which tasks in which order are shown to the stu-
dent. Originally, the task sequencing in adaptive intelligent
tutoring systems is done using information gained from
expert and domain knowledge and logged information about
the performance of students in former exercises. In [19] a
new efficient sequencer based on a performance prediction
system was presented, which only uses former performance
information from students to sequence the tasks and does
not need the expensive expert and domain knowledge. This
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approach applies for performance prediction the machine
learning method matrix factorization (see e.g. [4]) to former
performance information. Subsequently, it uses the output
of the performance prediction process to sequence the tasks
according to the theory of Vygotsky’s Zone of Proximal
Development [22]. That is the sequencer chooses the next
task in order to neither bore nor frustrate the student or in
other words, the next task should not be too easy or too
hard for the student. In this work we aim to support this
kind of task sequencing in intelligent tutoring systems by
affect recognition applied to speech input from the students
interacting with the system while solving tasks. Appropriate
to the used theory of Vygotsky’s Zone of Proximal Develop-
ment we try to classify features gained from the speech input
as ’the student wasover-challengedby the last task’, ’the
student wasunder-challengedby the last task’ or ’the student
was in aflow’. This information can be used to decide about
the next task. At first glance it seems to make sense to use as
features words related to affects after a speech recognition
was applied. However, this approach is dependent on the
performance of the speech recognition and inherits its error.
Hence, we decided to use features extracted directly from
the sound files, like features gained from speech pauses,
or features gained from initial processing steps of speech
recognition. The most efficient state-of-the-art classification
approach for the kind of features used is a support vector
machine (SVM, see e.g. [20] and [16]). However, usually
the collection of data from young students is costly and
complex and one has to consider privacy issues carefully.
These facts lead to small data sets in this area and finally
to a limited performance of the support vector machine
applied to the data. Hence, the question arises, if there is
a way to improve the classification performance. A hybrid
neural network plait (HNNP) for improving the classification
performance of artificial neural networks applied to signal
data like for instance Ground Penetrating Radar data (see
[9]) or phonemes (see [1], [14]) was presented in [10]. The
idea of this paper is to adapt the plait principle of the HNNP
approach to a structure of support vector machines applied
to features from speech data. The main contributions of this
paper are: (1) proposal and investigation of new features
for affect recognition in intelligent tutoring systems, (2)
proposal of an SVM plait structure for improving the affect



recognition performance and (3) different experiments with
real data proving the effectiveness of the proposed features
and SVM plait. In the following, we will present after the
related work section II the proposed features in section III
and the proposed SVM plait structure in section IV. The
different experiments and their results are presented and
discussed in section V.

II. RELATED WORK

Support vector machines (SVM, [2], [5]) are supervised
machine learning methods which can be used for classifica-
tion tasks and deliver in many areas the best performance in
comparison to other classification approaches. The library
LIBSVM ([3]) delivers an efficient and often used imple-
mentation of an SVM. In the field of emotion and affect
recognition SVMs are state-of-the-art for features extracted
for instance from speech data (see e.g. [20], [16]). Those
features can be disfluencies features like the ones used for
expert identification in [23], [18] and [15], or for emotion
recognition in [17]. In this work we investigate two different
own kind of features: amplitude and articulation features (see
section III). The amplitude features were already proposed
in former work (see [12], [13]), whereas the proposed
articulation features are new work.

The idea for our proposed SVM plait approach is based
on former work ([10], [11], [14]), where we developed
and investigated a hybrid neural network plait (HNNP)
for improving the classification performance on small and
noisy signal data sets. The HNNP approach uses different
feature sets from different information sources and different
kinds of neural networks with adapted architecture which
are retrained interactively within a plait structure using
additional side information gained before and during the
retraining for a further improvement. The SVM plait has a
similar structure but it uses the same kind of SVMs within
the plait structure and feature subsets of one information
source. The architecture of the SVMs within the SVM plait
structure do not need to be adapted, the additional input
is added instead to the input feature vectors. The proposed
plait structure uses the principles of ensemble methods like
stacking, or stacked generalization respectively, which are
explained and investigated for instance in [21]. Differentto
plain stacking the SVM plait consists of several layered
stackings with different additional inputs. A cascade of
SVMs is presented in [6], but the goal of that approach
is to enable a parallelization of SVMs for computing large
data.

III. SPEECHFEATURES AND AFFECT CLASSES

As mentioned above for our approach we use features
extracted from speech data. We propose two different kinds
of those features – features from amplitudes and articulation
features – which are described in the following two subsec-
tions. The class labels to which the features shall be mapped

come from the theory of Vygotsky’s Zone of Proximal
Development and can be summarized asperceived task-
difficulty labels: over-challenged, flowandunder-challenged.
For the sake of simplicity and as examples with labelunder-
challengedcan be observed rarely (in our real data sets there
were only 2 of those examples), in this work we focus on
the binary classification problem of distinguishing between
examples of classover-challengedand classflow. With more
data and more examples of classunder-challengedone has
simply to adapt the presented approach to a multi-class
problem by substituting the originally used support vector
machines by multi-class support vector machines (see also
section IV).

A. Features from Amplitudes

The first kind of features (see also [12], [13]) are features
gained from the amplitudes, or the decibel values respec-
tively, of the sound files. More explicitly, the decibel values
are used to identify pauses within the speech input data. This
is done by defining a threshold on the decibel scale (as done
e.g. in [15]) which designates which decibel values belong to
speech and which ones to pauses (see figure 1). We adjusted
the threshold for our experiments in section V by hand, but
later on – for the application phase – the threshold should
be learned.

The advantage of using features gained from amplitudes
is that instead of a full speech recognition approach only a
pause identification by means of the mentioned threshold has
to be applied before computing the features. That deceases
the complexity of the affect recognition and one does not
inherit the error of the full speech recognition approach,
which makes the system more noise robust. Furthermore,
these features are independent from the need that students
use words related to affects.

To compute features for a taski presented to a student
first we extract some measurements from the sound file of
the task, or from pause information gained from the decibel
values respectively:

• the total length of pausespi and the total length of
speechsi in the sound file,

• the number of pause segmentsnpi
and the number of

speech segmentsnsi within the speech input,
• theuth pause segmentp(u)i and thewth speech segment

s
(w)
i within the speech input,

• the secondsti needed by the student to solve the task.

The final featuresx0
i , . . . , x

7
i built from the extracted

measurements for a taski are the following:

x0
i =

pi

si

(Ratio between pauses and speech)
(1)

x1
i = npi

+ nsi

(Frequency of speech pause changes)
(2)



Figure 1. Graphic of the decibel scale of an example sound fileof a
student. The two straight horizontal lines indicate the threshold.

x2
i =

pi

(pi + si)

(Percentage of pauses of input speech data)
(3)

x3
i = max

u
(p

(u)
i )

(Length of maximal pause segment)
(4)

x4
i =

∑

u p
(u)
i

npi

(Length of average pause segment)

(5)

x5
i = max

w
(s

(w)
i )

(Length of maximal speech segment)
(6)

x6
i =

∑

w s
(w)
i

nsi

(Length of average speech segment)

(7)

x7
i = ti

(Seconds needed for the task)
(8)

The output of this feature extraction process is a feature
vector xi = (x0

i , . . . , x
7
i ), i = 1, . . .m, where m is the

number of examples and the appropriate class label isyi.
The idea behind this kind of features came from the

observation that often children exhibit longer pauses of
silence while thinking about the problem when they areover-
challengedor talk with less and smaller pauses when they
are in aflow (see also [13]).

B. Articulation Features

The second kind of new features we propose are artic-
ulation features gained from an intermediate step of the
speech recognition process. In preparation for the speech
recognition in this step the speech input is partitioned into
segments consisting of vowels, consonants – obstruents or
fricatives – and silence tags (as well as some non-speech
features like breathing, but those occurred rarely in our
collected real data, hence we did not use them for this work).
We use this preliminary information to create a new kind of
features for a taski. To compute these features first we have
to extract some measurements:

• the number of silence tagsnsili , the number of vowels
nVi

, the number of obstruentsnOi
and the number of

fricativesnFi
within the speech input of taski,

• the lengthsVi
(u), Oi

(w), Fi
(z) and sili

(r) of the uth
vowel, wth obstruent,zth fricative and therth silence
tag within the speech input of taski.

The final featuresx0
i , . . . , x

12
i gained from the extracted

measurements are the following:

x0
i = nsili

(Number of silence tags)
(9)

x1
i =

∑

u Vi
(u)

nVi

(Average length of vowels)

(10)

x2
i =

∑

w Oi
(w)

nOi

(Average length of obstruents)

(11)

x3
i =

∑

z Fi
(z)

nFi

(Average length of fricatives)

(12)

x4
i =

∑

r sili
(r)

nsili

(Average length of silence tags)

(13)

x5
i = max

u
(V

(u)
i )

(Maximal length of vowels)
(14)

x6
i = max

w
(O

(w)
i )

(Maximal length of obstruents)
(15)

x7
i = max

z
(F

(z)
i )

(Maximal length of fricatives)
(16)

x8
i = max

r
(sili

(r))

(Maximal length of silence tags)
(17)

x9
i = min

u
(V

(u)
i )

(Minimal length of vowels)
(18)

x10
i = min

w
(O

(w)
i )

(Minimal length of obstruents)
(19)

x11
i = min

z
(F

(z)
i )

(Minimal length of fricatives)
(20)

x12
i = min

r
(sili

(r))

(Minimal length of silence tags)
(21)



The output of this feature extraction process is a feature
vectorxi = (x0

i , . . . , x
12
i ), i = 1, . . .m, where againm is

the number of examples and the appropriate class label is
yi.

The idea behind this kind of features is that depending on
the affective state the person speaking lengthens or shortens
vowels, obstruents or fricatives.

IV. SVM PLAIT

The state-of-the-art method for classification applied to
the kind of features described above in section III is a
support vector machine (SVM). An SVM (see [2], [5]) is a
classifier which searches for a hyperplane which optimally –
with maximal margin – separates the examples of different
classes in the space of the example vectors. By means of the
kernel trick and a kernel function also non-linear problems
can be solved by an SVM. Originally, an SVM solves
binary classification problems but can be extended to multi-
class classification problems (see [3]). As mentioned above
we consider a binary classification problem in this paper.
For finding the mentioned optimal hyperplane the following
optimization problem has to be solved: minimize forw, b, ξ

1

2
||w||

2
2 + C

m
∑

i=1

ξi (22)

subject toyi (〈w, φ(xi)〉+ b) ≥ 1 − ξi, ξi ≥ 0, for all 1 ≤
i ≤ m. In the formula abovew is a normal vector,b is a bias,
C is a constant,m is the number of examples which consist
of a feature vectorxi and the class labelyi, i = 1, . . . ,m,
the ξi ≥ 0 are slack variables andφ is a function mapping
the data to a higher dimension to apply the kernel trick.
Usually, this optimization problem is solved in its dual form:
maximize forα

m
∑

i=1

αi −
1

2

m
∑

i=1

m
∑

j=1

αiαjyiyjk (xixj) (23)

subject to0 ≤ αi ≤ C and
∑m

i=1 αiyi = 0. The appropriate
classification rule is:

f(x) = sgn(〈w, φ(x)〉 + b)

= sgn

(

m
∑

i=1

αiyik (xi,x) + b

)

.
(24)

In formula (23) and (24) theαi are Lagrange multipliers,
k is the kernel function (k(xi,xj) = 〈φ(xi), φ(xj)〉), C

is a constant appearing as an additional constraint on the
Lagrange multipliers,sgn is the sign function, andw is the
normal vector (w =

∑m

i=1 αiyiφ(xi)).
For our proposed approach the described single SVMs

are interweaved within a plait structure (see figure 2) by
combining the classification decisions of SVMs in former
plait layers with the feature vectors and feeding this com-
bined new feature vectors into further SVMs. In this way
the classification performance is improved over the plait

I0 I1 I2

SVM2
(0) P0

P1

P2

Pq

y

SVM1
(0) SVM3

(0)

SVM2
(q)SVM1

(q) SVM3
(q)

SVM2
(2)SVM1

(2) SVM3
(2)

SVM2
(1)SVM1

(1) SVM3
(1)

. . . . . . . . .

SVM0

Figure 2. Architecture of the SVM plait. The plait is composed of q +

1 layersP0, P1, . . . , Pq (q is a hyper parameter). Each layer contains 3
SVMs, which get different feature vectors as input. In everyplait layer
from P1 on the SVMs are retrained with enhanced input feature vectors.
The enhancement is information from the former layer, namely the outputs
(the predicted class labels) of the SVMs in the previous plait layer. After
the last plait layerPq a further SVM (SVM0) is attached to achieve one
common outputy delivering the final classification result.

layers, as SVMs in later layers learn how to consider
the classification decisions of previous SVMs to improve
their own classification performance. The feature vectors
for the SVMs SVM(0)

1 , SVM(0)
2 , SVM(0)

3 in the first plait



layer P0 stem only from the original feature vectorxi =
(x0

i , . . . , x
l
i), i = 1, . . . ,m, (l + 1) = number of features,

with amplitude (l = 7) or articulation (l = 12) features as
described in section III. The original feature vectorxi is
divided into as many vectors as there are SVMs in one plait
layer, i.e. in figure 2 the first input vectors are:

I0 = x

SVM(0)
1

i = (x0
i , . . . , x

(1· l

3 )
i ) , (25)

I1 = x

SVM(0)
2

i = (x
(1· l

3 )+1
i , . . . , x

(2· l

3 )
i ) , (26)

I2 = x

SVM(0)
3

i = (x
(2· l

3 )+1
i , . . . , xl

i) . (27)

If l is too small (like for the amplitude features) then the
input vectorsI0, I1 andI2 also may overlap to ensure that
there are enough feature values within one vector for a good
classification performance of the single SVMs. The input
feature vectors for the later layers within the plait structure

are different. That is the input feature vectorsx
SVM(d)

1
i ,

x

SVM(d)
2

i , x
SVM(d)

3

i for the SVMs SVM(d)
1 , SVM(d)

2 , SVM(d)
3

in plait layerPd are enhanced by two further inputs:

x

SVM(d)
1

i = (I0, ŷ
SVM(d−1)

2
i , ŷ

SVM(d−1)
3

i )

= (x
SVM(0)

1
i , ŷ

SVM(d−1)
2

i , ŷ
SVM(d−1)

3
i )

= (x0
i , . . . , x

(1· l

3 )
i , ŷ

SVM(d−1)
2

i , ŷ
SVM(d−1)

3
i )

(28)

x

SVM(d)
2

i = (I1, ŷ
SVM(d−1)

1
i , ŷ

SVM(d−1)
3

i )

= (x
SVM(0)

2
i , ŷ

SVM(d−1)
1

i , ŷ
SVM(d−1)

3
i )

= (x
(1· l

3 )+1
i , . . . , x

(2· l

3 )
i , ŷ

SVM(d−1)
1

i , ŷ
SVM(d−1)

3
i )

(29)

x

SVM(d)
3

i = (I2, ŷ
SVM(d−1)

1

i , ŷ
SVM(d−1)

2

i )

= (x
SVM(0)

3
i , ŷ

SVM(d−1)
1

i , ŷ
SVM(d−1)

2
i )

= (x
(2· l

3 )+1
i , . . . , xl

i, ŷ
SVM(d−1)

1
i , ŷ

SVM(d−1)
2

i )

(30)

These further inputŝy
SVM(d−1)

1

i , ŷ
SVM(d−1)

2

i andŷ
SVM(d−1)

3

i are
the outputs, i.e the predicted class labels, of the SVMs
SVM(d−1)

1 , SVM(d−1)
2 , SVM(d−1)

3 of the previous plait layer
P(d−1). That means that SVM(d)1 , SVM(d)

2 and SVM(d)
3 take

into account the classification decisions – wrong or correct
– of the previous SVMs SVM(d−1)

1 , SVM(d−1)
2 , SVM(d−1)

3

to improve their own classification. The described approach
will be proven by experiments in the following section V.

V. EXPERIMENTS

To prove the proposed approach, we conducted 4 main
experiments which will be discussed in section V-C, V-D
and V-E. The real data used and the experimental settings
are described in section V-A and V-B.

Table I
NUMBERS (#) OF STUDENTS, OF EXAMPLES(TASKS OVERALL) AND OF

EXAMPLES WITH CLASS LABEL over-challengedAS WELL AS OF
EXAMPLES WITH CLASS LABEL flow FOR THEGERMAN AND THE

ENGLISH DATA .

Data set # students # examples # over-challenged # flow

German 10 34 12 22

English 6 20 6 14

Table II
EXPERIMENTS WITH FEATURES FROM AMPLITUDES. NUMBERS (#) OF

TRAIN AND TEST EXAMPLES FOR THE2-FOLD CROSS VALIDATION FOR
EVERY SUBSET. IN BRACKETS THE DISTRIBUTION OF BOTH CLASSES IS

NOTED: (# over-challenged+ # flow). THE LAST COLUMN REPORTS THE

CLASSIFICATION TEST ERROR OF A SINGLESVM.

Data # train # test # train # test Error

fold 1 fold 1 fold 2 fold 2

German 11 12 12 11

(subset 1) (6+5) (6+6) (6+6) (6+5) 30.30

German 11 12 12 11

(subset 2) (6+5) (6+6) (6+6) (6+5) 30.30

German- 18 18 18 18

English (9+9) (9+9) (9+9) (9+9) 36.11

(subset 1)

German- 18 18 18 18

English (9+9) (9+9) (9+9) (9+9) 33.33

(subset 2)

A. Data Sets

For the experiments we used two different real data sets
(see table I) collected in the course of the EU project
iTalk2Learn ([8]). The first data set was gained from in-
teractions with German students and the second one from
interactions with English students.

For the German data set a study was conducted in
which the speech and actions of ten 10 to 12 years old
German students were recorded and students perceived task-
difficulties (see section III) were reported. During the study
a paper sheet with fraction tasks was shown to the students
and they were asked to paint – by means of a software for
painting with a computer – and explain their observations
and answers. The acoustic speech recordings, consisting of
10 wav files with a length from 15 up to 20 minutes, were
used to gain the input features for affect recognition, i.e.the
amplitude and articulation features.

For the English data set the speech data of six British
students in the age of 8 to 11 years were recorded and
the perceived task-difficulties reported. During the studythe
students were asked to solve fraction tasks of a tutoring
system on a computer and to explain their observations
and solutions. The acoustic speech recordings for extracting
the features for the affect recognition (amplitude features)
consist of 6 wav files with a length from 11 up to 30 minutes.
As the English data set is quite small and we want to find



Table III
CLASSIFICATION TEST ERRORS OF THE SINGLESVMS, ENSEMBLE

METHODS AND SVM PLAIT APPLIED TO FEATURES FROM AMPLITUDES
OF THE 2 GERMAN-ENGLISH SUBSETS AND THE AVERAGE(LAST

COLUMN).

German-English German-English avrg.

(subset 1) (subset 2)

Single SVM 36.11 33.33 34.72

SVM(0)
1 33.33 30.56 31.95

SVM(0)
2 38.89 27.78 33.34

SVM(0)
3 36.11 33.33 34.72

Majority 36.11 25.00 30.56

Stacking 25.00 25.00 25.00

SVM Plait 22.22 19.44 20.83

out if the features are language independent so that we can
generalize our system, we did no experiments only with the
English data but with the English data together with the
German data.

Overall we conducted 4 main experiments:

(I) a single SVM applied to features from amplitudes of
the German data,

(II) a single SVM applied to features from amplitudes of
the German-English data,

(III) SVM plait with 3 SVMs in each layer applied to
features from amplitudes of the German-English data
and

(IV) SVM plait with 3 SVMs in each layer applied to
articulation features of the German data.

The results of the 4 main experiments are reported in the
following subsections.

B. Experimental Settings

For the experiments we used the library LIBSVM ([3])
delivering an implementation of support vector machines.
We applied SVMs with an RBF-kernel and for each SVM
used we conducted a grid search (according to [7]) to
estimate the optimal values for the hyper parametersC and
γ. The input feature values which are fed into the SVMs
are normalized to be in the interval[0, 1]. As mentioned in
section III the SVMs are used to solve a binary classification
problem, i.e. to classify examples as eitherover-challenged
or flow. Because of the small size of the data and as the data
is imbalanced (in table I one can see that there are more
examples with labelflow) we applied a variation of a 2-fold
cross validation: for every main experiment we split the set
of examples with labelflow into 2 subsets and conducted 2
different experiments consisting of a 2-fold cross validation
with each of the 2 subsets. This approach leads to balanced
data as one can see in table II.
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1
5

2
0

2
5

3
0

3
5

Plait layer

C
la

s
s
if
ic

a
ti
o
n

te
s
t
e
rr

o
r

(%
)

SVM1

SVM2
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Figure 3. The evolution of the average classification test error of the single
SVMs SVM1, SVM2, SVM3 and the SVM plait over the plait layers for
the amplitude features of the German-English data.

C. Results of Experiment I and II

For experiment I and II we applied a single SVM to
the amplitude features of the German data and the mixed
German-English data. The results are shown in table II. The
classification test error is smaller for the German data alone
than for the mixed German-English data, but the error for the
mixed German-English data is still good enough to assume
that in cases where the data is too small for training, like our
English data, we can enable the training by using further data
from a different source, like our German data, and still get a
good classification result. However, the classification results
with the single SVM overall are not satisfactory enough and
the question arises if one could improve the classification
performance. Hence, in the next section we investigate the
application of the SVM plait to the data.

D. Results Experiment of III

In experiment III we applied the SVM plait with 3 plait
layers to the amplitude features of the German-English data.
The results are shown in table III. Table III shows the
classification test errors for both subsets as well as the
average error. The classification test error is reported

(a) for a single SVM (see also experiment II),
(b) for the three single SVMs SVM(0)1 , SVM(0)

2 , SVM(0)
3

of the first plait layer, were each of them is applied to
one of three overlapping splits of the amplitude feature
vector ((x0

i , . . . , x
3
i ), (x

2
i , . . . , x

5
i ), (x

4
i , . . . , x

7
i )),

(c) for two ensemble methods applied to the outputs of
SVM(0)

1 , SVM(0)
2 , SVM(0)

3 : majority vote and stacking,
i.e. a subsequent SVM,



(d) the SVM plait.
In table III one can see that the SVM plait outperforms
the single SVMs as well as the ensemble methods and
improves on average the classification performance by 40
% in comparison to the single SVM applied in experiment
II.

In figure 3 the evolution of the average classification test
error of SVM(d)

1 , SVM(d)
2 , SVM(d)

3 , d = 0, . . . , (q+1), q =
2, and the SVM plait (with1, . . . , (q + 2) layers) over the
plait layers is shown. As one can see the error decreases
for all of them over the plait layers. In the third plait layer
the classification test error of the SVM plait is minimal,
hence we applied an SVM plait with 3 plait layers in this
experiment.

E. Results of Experiment IV

In experiment IV we applied the SVM plait with 5
plait layers to the articulation features of the German data.
The results are shown in table IV. Table IV shows the
classification test errors for both subsets as well as the
average error. Similar to experiment III the classificationtest
error is reported
(a) for a single SVM applied to the full feature vector

(x0
i , . . . , x

12
i ),

(b) for the three single SVMs SVM(0)1 , SVM(0)
2 , SVM(0)

3

of the first plait layer, were each of them is applied
to one of three splits of the amplitude feature vector
((x0

i , . . . , x
4
i ), (x

5
i , . . . , x

8
i ), (x

9
i , . . . , x

12
i )),

(c) for two ensemble methods applied to the outputs of
SVM(0)

1 , SVM(0)
2 , SVM(0)

3 : majority vote and stacking,
i.e. a subsequent SVM,

(d) the SVM plait.
In table IV one can see that the SVM plait outperforms
the single SVMs as well as the ensemble methods and
improves on average the classification performance by 57 %
in comparison to the single SVM applied to the full feature
vector.

A comparison of the results of the two single SVMs
applied to the full input feature vectors in experiment III
and IV shows that on average the classification performance
on articulation features is similar good as the classification
performance on amplitude features.

In figure 4 the evolution of the average classification test
error of SVM(d)

1 , SVM(d)
2 , SVM(d)

3 , d = 0, . . . , (q+2), q =
4, and the SVM plait (with1, . . . , (q + 3) layers) over the
plait layers is shown. As one can see the error decreases over
the plait layers. In the fifth plait layer the classification test
error of the SVM plait reaches its minimum, hence we have
applied an SVM plait with 5 plait layers in this experiment.

VI. CONCLUSIONS ANDFUTURE WORK

We presented an approach for improving the affect recog-
nition in intelligent tutoring systems by using a plait struc-
ture of support vector machines with different input feature

Table IV
CLASSIFICATION TEST ERRORS OF THE SINGLESVMS, ENSEMBLE

METHODS AND SVM PLAIT APPLIED TO ARTICULATION FEATURES OF
THE 2 GERMAN SUBSETS AND THE AVERAGE(LAST COLUMN).

German German avrg.

(subset 1) (subset 2)

Single SVM 39.02 31.06 35.04

SVM(0)
1 26.14 30.30 28.22

SVM(0)
2 39.02 39.02 39.02

SVM(0)
3 48.11 39.77 43.94

Majority 34.78 34.78 34.78

Stacking 26.14 39.39 32.77

SVM Plait 8.33 21.59 14.96
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Figure 4. The evolution of the average classification test error of the single
SVMs SVM1, SVM2, SVM3 and the SVM plait over the plait layers for
the articulation features of the German data.

vectors. Furthermore, we proposed a new kind of features
for that problem stemming from initial processing steps of
speech recognition. The results of our experiments with real
data sets show that the proposed SVM plait approach is
able to improve the classification performance significantly
and that the proposed amplitude and articulation features are
suitable for affect recognition in intelligent tutoring systems.
Some future work will be to investigate how to combine both
feature types.

Moreover, with this work we have shown that the general
plait structure does not just work with artificial neural
networks like convolutional neural networks or multilayer
perceptrons within the HNNP but also with support vector
machines. Hence, some future work would be to investigate,
if the plait structure also works with other classifiers and to
define a general plait principle.
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