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Abstract: In Intelligent Tutoring Systems, adaptive sequencers can take past student performances into account to select
the next task which best fits the student’s learning needs. In order to do so, the system has to assess student
skills and match them to the required skills and difficulties of available tasks. In this scenario two problems
arise: (i) Tagging tasks with required skills and difficulties necessitate experts and thus is time-consuming,
costly, and, especially for fine-grained skill levels, also potentially subjective. (ii) Learning adaptive sequenc-
ing models requires online experiments with real students, that have to be diligently ethically monitored. In
this paper we address these two problems. First, we show that Matrix Factorization, as performance predic-
tion model, can be employed to uncover unknown skill requirements and difficulties of tasks. It thus enables
sequencing without explicit domain knowledge, exploiting the Vygotski concept of Zone of Proximal Devel-
opment. In simulation experiments, this approach compares favorably to common domain informed sequenc-
ing strategies, making tagging tasks obsolete. Second, we propose a simulation model for synthetic learning
processes, discuss its plausibility and show how it can be used to facilitate preliminary testing of sequencers
before real students are involved.

1 INTRODUCTION

Intelligent Tutoring Systems (ITS) are more and
more becoming of crucial importance in education.
Apart from the possibility to practice any time, adap-
tivity and individualization are the main reasons for
their widespread availability as app, web service and
software. The system generally is composed of an
internal user model and a sequencer, that, accord-
ing to the given information, sequences the contents
with a policy. On that side many efforts have been
put into Bayesian Knowledge Tracing (BKT), starting
with not personalized and single skills user modeling.
The limit of this problem formulation became clear
soon, also because the contents evolved together with
the technology. Multiple skills contents were devel-
oped, e.g. multiple step exercises and simulated ex-
ploration environment for learning. In order to main-
tain the single skill formulation systems fell back on
scaffolding, i.e. a built in structure was inserted in or-
der to clearly distinguish within the content between
the different steps/skills required. As a consequence,
the engineering and authoring effort to develop an ITS
increased exponentially obliging a meticulous analy-
sis of the contents in order to subdivide and design

them in clearly separable skills.
Other efforts have been put into adaptive sequenc-
ing. The main approach used can be reconnected to
robotics, which has an availability of accurate simu-
lators and tireless test subjects. The same cannot be
said for ITS where, generally, apart from adults, also
children of any age are involved.
In this paper we propose a novel method of sequenc-
ing based on Matrix Factorization Performance Pre-
diction and Vygotski concept of Zone of Proximal
Development. The main contributions are:

1. A content sequencer based on a performance pre-
diction systems that (1) can be set up and prelim-
inary evaluated in a laboratory, (2) models multi-
ple skills and individualization without engineer-
ing/authoring effort, (3) adapts to each combina-
tion of contents, levels and skills available.

2. Simulated environment with multiple skill con-
tents and students’ knowledge representation,
where knowledge and performance are modeled
in a continuous way.

3. Experiments on different scenarios with direct
comparison with informed baseline.



The paper is structured as follows: in Section 2 one
can find a brief state of the art description, in Section
3 the explanation of the sequencer problem, in Sec-
tion 4 the simulated learning process, in Section 5 the
performance based policy and predictor, in Section 6
the experimental results and least the conclusions.

2 RELATED WORK

Many Machine Learning techniques have been
used to ameliorate ITS, especially in order to ex-
tend learning potential for students and reduce engi-
neering efforts for designing the ITS. The most used
technology for sequencing is Reinforcement Learn-
ing (RL), which computes the best sequence trying to
maximize a previously defined reward function. Both
model–free and model–based (Malpani et al., 2011;
Beck et al., 2000) RL were tested for content sequenc-
ing. Unfortunately, the model–based RL necessitates
of a special kind of data sets called exploratory cor-
pus. Available data sets are log files of ITS which
have a fixed sequencing policy that teachers designed
to grant learning. They explore a small part of the
state–action space and yield to biased or limited in-
formation. For instance, since a novice student will
never see an exercise of expert level, it is impossible
to retrieve the probability of a novice student solv-
ing some contents. Without these probabilities the
RL model cannot be built (Chi et al., 2011). Model–
free RL, instead, assumes a high availability of stu-
dents on which one can perform an on-line training.
The model does not require an exploratory corpus but
needs to be built while the users are playing with the
designed system. Given the high cost of an exper-
iment with humans, most authors exploit simulated
single skill students based on different technologies
like Artificial Neural Networks or self developed stu-
dent models (Sarma and Ravindran, 2007; Malpani
et al., 2011). Particularly similar to our approach is
(Malpani et al., 2011), where contents are sequenced
with a particular model–free RL based on the actor
critic algorithm (Konda and Tsitsiklis, 2000), which
was selected because of its faster convergence in com-
parison with the classic Q–Learning algorithm (Sut-
ton and Barto, 1998). Unfortunately, RL algorithms
still need many episodes to converge and will always
need preliminary trainings on simulated students.
Our developed content sequencer is based on student
performance predictions. An example of state of the
art method is Bayesian Knowledge Tracing (BKT)
and its extensions. The algorithm is built on a given
prior knowledge of the students and a data set of bi-
nary student performances. It is assumed that there

is a hidden state representing the knowledge of a stu-
dent and an observed state given by the recorded per-
formances. The model learned is composed by slip,
guess, learning and not learning probability, which
are then used to compute the predicted performances
(Corbett and Anderson, 1994). In the BKT exten-
sions also difficulty, multiple skill levels and person-
alization are taken into account separately (Wang and
Heffernan, 2012; Pardos and Heffernan, 2010; Par-
dos and Heffernan, 2011; D Baker et al., 2008). BKT
researchers have discussed the problem of sequenc-
ing both in single and in multiple skill environment in
(Koedinger et al., 2011). In a single skill environment
the most not mastered skill is selected, whereas in the
multiple skill this behavior would present a too dif-
ficult content sequence. Consequently, the contents
with a small number of not mastered skills are se-
lected. Moreover, (Koedinger et al., 2011) point out
how in ITS multiple skill exercises are modeled as
single skill ones in order to overcome BKT limita-
tions. We would like to stress that the sequencing
requires an internal skills representation and conse-
quently, together with the performance prediction al-
gorithm, is domain dependent.
Another domain dependent algorithm used for perfor-
mance prediction is the Performance Factors Analy-
sis (PFM). In the latter the probability of learning is
computed using the previous number of failures and
successes, i.e. the representation of score is binary
like in BKT (Pavlik et al., 2009). Moreover, similarly
to BKT, a table connecting contents and skills is re-
quired.
Matrix Factorization (MF) is the algorithm used in
this paper for performance prediction. It has many
applications like, for instance, dimensionality reduc-
tion, clustering and also classification (Cichocki et al.,
2009). The most common use is for Recommender
Systems (Koren et al., 2009) and recently this con-
cept was extended to ITS (Thai-Nghe et al., 2011).
We selected this algorithm for several reasons:

1. Domain independence. Ability to model each
skill, i.e. no engineering/authoring effort in in-
dividuating the skills involved in the contents.

2. Having comparable results with BKT latest im-
plementations (Thai-Nghe et al., 2012).

3. Possibility to build the system with a common
data set, i.e. without an exploratory corpus.

4. Small computational time on a 3rd Gen Ci5/4GB
laptop and Java implementation: 0.43 s for build-
ing the model with already 122000 lines, negligi-
ble time for performance prediction.
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Figure 1: System structure in a block diagram.

3 CONTENT SEQUENCING IN
ITS

The designed system consists of two main blocks.
The first one is the environment and is represented by
the students playing with the ITS. In our case this role
is simulated because an on-line evaluation is required,
i.e. the sequence optimality can be measured only af-
ter a student worked with it. We excluded the possibil-
ity of collecting an exploratory corpus because mak-
ing practice with very easy and very difficult exercises
in random order could be frustrating for the students,
who could be children. Moreover, having a simulated
environment could help gaining the confidence nec-
essary for experimenting on humans. Anyway, after
a first validation with real students, only a common
data set collection will be necessary to set up the sys-
tem with new contents, giving also the possibility to
calibrate the environment and later use it for new se-
quencing methods.
The second block consists of different modules, i.e.
the available contents, the previous interactions of the
students with the system (log files), the student Per-
formance Predictor and the Sequencer Policy. We
chose a specific Performance Predictor and policy,
but nothing is against using other ones in the future.
When a student plays with the system the next exer-
cise is proposed to him by the sequencer according
to a policy. The Performance Predictor needs the log
files of students playing with the contents considered
to predict their scores in the next contents. The pol-
icy is applied in an adaptive way thanks to the infor-
mation on the predicted scores shared between Per-
formance Predictor and Sequencer. In the following
Sections we will describe the different blocks repre-
sented in Fig. 1.

4 SIMULATED LEARNING
PROCESS

We designed a simulated student based on the fol-
lowing assumptions. (1) A content is either of the
correct difficulty for a student, or too easy, or too dif-
ficult. (2) A student cannot learn from too easy con-
tents and learns from difficult ones proportionally to
his knowledge level. (3) It is impossible to learn from
a content more than the required skills to solve it. (4)
The total knowledge at the beginning is different than
zero. (5) The general knowledge of connected skills
helps solving and learning from a content. The last
assumption is more plausible because we assume to
sequence activities of the same domain. For instance,
in order to solve a fraction addition, a student needs
more related skills: multiplication, fraction expansion
etc. It is unlikely for a student to do a fraction expan-
sion without knowing how multiplication works. At
the same time the knowledge of multiplication will
help him solving the steps on fraction expansion.
A student simulator is a tuple (S,C,y,τ) where, given
a set S⊆ [0,1]K of students, si is a specific student de-
scribed as a vector ϕt . The latter is of dimension K,
where K is the number of skills involved. C ⊆ [0,1]K

is a set of contents, where c j is the j–th content, de-
fined with a vector ψ j of K elements representing
the skills required. ϕi,k = 0 means student i has no
knowledge skill k, whereas ϕi,k = 1 means having full
knowledge. τ : S×C→ S is a function defining the
follow-up state ϕt+1 = ϕt + τ of a student si ∈ S after
working on contents ct

j. In particular S and C are the
spaces of the students and contents respectively. Fi-
nally, a function y defines the performance y(ϕi,ψ j).
y and τ can be formalized as follows:

y(ϕi,ψ j) :=max(1− ||α||
||ϕi||

,0)

τ(ϕi,ψ j)k :=y(ϕik,ψ jk)αk

ỹ :=yε (1)

where
α

i, j
k = max(ψ jk−ϕik,0) (2)

and ε is proportional to the beta distribution B (p,q).
We selected p and q in order to have ỹ ∼ B

(
y,σ2

)
,

where σ2 is the variance, i.e. the amount of noise. We
chose the beta distribution because it is defined be-
tween zero and one as the score. Consequently it will
not change the codomain of the y function. The char-
acteristic of the formulas are the following. (1) The
performance of a student on a content decreases pro-
portionally to his skill deficiencies w.r.t. the required
skills. (2) The student will improve all the required
skills of a content proportionally to his performance



c j dc y τk
{0.1,0.1} 0.2 1 {0,0}
{0.5,0.6} 1.1 0.617 {0.12,0.0617}
{0.5,0.7} 1.2 0.515 {0.1,0.1}
{0.9,0.9} 1.8 0 {0,0}

Table 1: Simulated learning process with two skills. A sim-
ulated student with ϕ = {0.3,0.5} scores y and learning τ

after interacting with different contents c j.

and his skill-specific deficiency up to the skill level a
content requires. (3) As a consequence it is not pos-
sible to learn from a content more than the difference
from the required and possessed skills. (4) A further
property of this model is that contents requiring twice
the skills level that a student has, i.e.

∥∥ψ j
∥∥ ≥ 2‖ϕi‖,

are beyond the reach of a student. For this reason
his performance will be zero (y = 0). With a sim-
ple experiment without noise, we can show the plau-
sibility of the designed simulator. We inserted val-
ues in Eqs. 1 as follows. Let us consider a system
with two skills and represent the student knowledge
as ϕ = {0.3,0.5}. As it is possible to see in Tab. 1
with the increase of the content difficulty the learning
increases and the score decreases until ‖ψi‖≥ 2

∥∥∥ϕ j

∥∥∥.
The maximal difficulty level is equal to the number of
skills since a single skill value cannot be greater than
one.

5 VYGOTSKI POLICY AND
MATRIX FACTORIZATION

5.1 Sequencer

The designed sequencer is defined as follows. Let
C ⊆C and S⊆ S be respectively a set of contents and
students defined in Section 4, dc j be the difficulty of a
content defined as dc j = ∑

K
k=0 ψ j,k, ỹ : S×C→ [0,1]

be the performance or the score of a student working
on the content, and T be the number of time steps as-
suming that the student is seeing one content every
time step. The content sequencing problem consists
in finding a policy:

π
∗ : (C× [0,1])→ C. (3)

that maximize the learning of a student within a
given time T without any environment knowledge, i.e.
without knowing the difficulties of the contents and
the required skills to solve them. A common problem
in designing a policy for ITS is retrieving the knowl-
edge of the student from the given information, e.g.
score, time needed, previous exercises, etc. The pre-

vious mentioned data types are just an indirect rep-
resentation of the knowledge, which cannot be auto-
matically measured, but needs to be modeled inside
the system. Hence, integrating the curriculum and
skills structure is the cause of the high costs in de-
signing the sequencer. In this paper we try to keep the
contents in the Vygotskis Zone of Proximal Develop-
ment (ZPD) (Vygotski, 1978), i.e. the area where the
contents neither bore or overwhelm the learner. We
mathematically formalized the concept with the fol-
lowing policy, that we called Vygotski Policy (VP):

ct∗ = argminc
∣∣yth− ŷt (c)

∣∣ (4)
where yth is the threshold score, i.e. the score that
keeps the contents in the ZPD. The policy will select
at each time step the content with the predicted score
ŷt at time t most similar to yth. We will discuss fur-
ther in the experiment session how to tune this hyper
parameter and its meaning.
The peculiarity of the VP is the absence of the dif-
ficulty concept. Defining the difficulty for a content
in a simulated environment as ours is easy, because
we mathematically define the skills required. In the
real case it is not trivial and quite subjective. Also
the required skills are considered as given in the other
state of the art methods like PFM and BKT, where
a table represents the connection between contents
and skills required. Without skills information not
only BKT and PFM performance prediction cannot
be used in our formalization, also sequencing meth-
ods (Koedinger et al., 2011) have no information to
work with.

5.2 Matrix Factorization as
Performance Predictor

Matrix Factorization (MF) is a state-of-the-art method
for recommender systems. It predicts which is the fu-
ture user ratings on a specific items based on his pre-
vious ratings and the previous ratings of other users.
The concept has been extended to student perfor-
mance prediction, where a student next performance,
or score is predicted. The matrix Y ∈ Rns×nc can be
seen as a table of nc total contents and ns students used
to train the system, where for some contents and stu-
dents performance measures are given. MF decom-
poses the matrix Y in two other ones Ψ ∈ Rnc×P and
Φ ∈ Rns×P, so that Y ≈ Ŷ = ΨΦ. Ψ and Φ are matri-
ces of latent features. Their elements are learned with
gradient descend from the given performances. This
allows computing the missing elements of Y and con-
sequently predicting the student performances (Fig.
2). The optimization function is represented by:

min
ψ j ,ϕi

∑
j∈C

(yi j− ŷi j)
2 +λ(‖Ψ‖2 +‖Φ‖2) (5)
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Figure 2: Table of scores given for each student on contents
(left), completed table by the MF algorithm with predicted
scores (right).

where one wants to minimize the regularized squared
error on the set of known scores. The prediction func-
tion is represented by:

ŷi j = µ+µc j +µsi +
P

∑
p=0

ϕ
T
ipψ jp (6)

where µ, µc and µs are respectively the average per-
formance of all contents of all students, the learned
average performance of a content, and learned aver-
age performance of a student. The two last mentioned
parameters are also learned with the gradient descend
algorithm.
The MF problem does not deal with time, i.e. all the
training performances are considered equally. In or-
der to keep the model up to date, it is necessary to re-
train the model at each time step. MF has a personal-
ized prediction, i.e. a small number of exercises needs
to be shown to each student in order to avoid the so
called cold–start problem. Although some solutions
to these problems have been proposed in (Thai-Nghe
et al., 2011; Krohn-Grimberghe et al., 2011), we will
show in the experiment session that these aspects do
not affect the performance of the system, neither they
reduce its applicability. From now on we will call
the sequencer utilizing the VP policy and the MF per-
formance predictor VPS, i.e. Vygotsky Policy based
Sequencer.

6 EXPERIMENT SESSION

In this section we show how the single elements
work in detail. We start with the student simula-
tor, continue with the VP and end with some exper-
iments with performance prediction in different sce-
narios and noise. A scenario is represented by a num-
ber of contents nc, a number of difficulty levels nd ,
a number of skills nk, and a number of students for
each group nt

1. All the first experiments will have no
noise, i.e. ỹ = y.

1The MF was previously trained with ns students that
were used to learn the characteristic of the contents. Con-
sequently, the dimensions of the MF during the simulated
learning process are: Ψ ∈ Rnc×P and Φ ∈ R(ns+nt )×P, so
that Y ≈ Ŷ = ΨΦ.

6.1 Experiments on the Simulated
Learning Process

To prove the operating principle of the simulator we
tested basic sequencing methods in a particular sce-
nario. The one we chose is described in Fig. 3, with
nd = 7 and nc = 100. For representation purposes
we created the contents with increasing difficulty, so
that IDs implicitly indicates the difficulty2. The sce-
nario mimics an interesting situation for sequencing,
i.e. when more apparently equivalent exercises are
available. The two policies we used are (1) Random
(RND), where contents are selected randomly, and
(2) the in range policy (RANGE), where each second
content is selected in difficulty order. This strategy
is informed on the domain because it knows the diffi-
culty of the contents. We initialized the students and
contents skills with an uniform random distribution
between 0 and 1. Again for representation purposes
we show the average total knowledge of the students
that is represented by average of the students skills
sum at each time step. We chose to perform the tests
on 10 skills, i.e. the maximal total knowledge possi-
ble is equal to 10. We considered the scenario mas-
tered when the total knowledge of the student group is
greater than or equal to the 95% of the maximal total
knowledge.
Fig. 4 shows the total knowledge of two groups of
nt = 200 students, one group was trained with random
policy the other one with the in range policy. RANGE
is characterized by a low variance in the learning pro-
cess. RND, instead, has a high variance because the
knowledge level of the students at each time step is
given by chance. It is shown that the order in which
the student practices on the contents is important for
the total final learning. Fig. 4 also shows how the
practice on too many contents of the same difficulty
level, after a while, saturates the knowledge acquisi-
tion. All these aspects demonstrate that the learning
progress is plausibly simulated.

6.2 Sensitivity Analysis on the Vygotski
Policy

In order to evaluate the VP we created two more se-
quencing methods that exploit information not avail-
able in reality. The best sequencing knows ex-
actly which is the content maximizing the learning
for a student, for this reason we called it Ground
Truth (GT). Vygotski Policy Sequencer Ground Truth
(VPSGT), instead, uses the Vygotski Policy and the

2A content with ID 2 is easier than a content with ID
100, see Fig. 3



true score y of a student to select the following con-
tent. GT and VPSGT can be considered the upper
bound of the sequencer potential in a scenario. In or-
der to select the correct value of yth we plot the aver-
age knowledge level at time t = 11 for the policy with
different yth. From Fig. 5 one can see that the policy
is working for yth ∈ [0.4,0.7], this because of the re-
lationship between Eqs. 1 of the student simulator. In
a real environment the interpretation of these results
is twofold. First we assume yth will be approximately
the score keeping the students in the ZDP. Second,
from a RL perspective, this value would allow finding
the trade–off between exploring new concepts and ex-
ploiting the already possessed knowledge. Moreover,
as one can see in Fig. 6, the policy obtains good re-
sults if compared with GT for some yth, but for others
the policy is outside the ZPD and the students do not
reach the total knowledge of the scenario. In some
experiments we noticed that the width of the curve
in Fig. 5 decreased so that the outer limits of the yth
interval create a sequence outside the ZPD. As conse-
quence we selected the value yth = 0.5 that was suc-
cessful in most of the scenarios.

6.3 Vygotski Policy based Sequencer

The scenario we selected for the tests with the VPS
has nc = 200, nd = 6, nk = 10 and nt = 400. In or-
der to train the MF–model a training and test data set
need to be created. We used ns = 300 students who
learned with all the contents in order of difficulty. We
used 66% of the data to train the MF–model and the
remaining 34% to evaluate the Root Mean Squared
Error (RMSE) for selecting the regularization factor
λ and the learning rate of the gradient descent algo-
rithm. We performed a full Grid Search and selected
the parameters shown in Tab. 2. The sequencing ex-
periments are done on a separate group of nt students.
In order to avoid the cold start problem 5 contents are
shown to them and their scores added to the training
set of the MF. For T = 40 the best content c∗tj is se-
lected with the policy VP for the nt students, using the
predicted performance ŷt

i j. In order to avoid the dete-
rioration of the model, after each time step the model
is trained again once all students saw an exercise. A
detailed description of the algorithm of the sequencer
can be found in Alg. 1, where Y0 is the initial data set.
As one can see in Fig. 7 the VPS selects the first con-
tent similarly to RANGE. Then the prediction allows
to skip unnecessary contents speeding up the learning.
Once the total knowledge arrives around 95%, the se-
lection policy cannot find contents that fit to the re-
quirements. Consequently the students learn as slow
as the RND group, as one can see from the saturat-

Parameters Choice
Learning Rate 0.01

Latent Features 60
Regularization 0.02

Number of Iteration 10
Table 2: Parameters MF
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Figure 3: Scenario: Content Number and difficulty level.

ing curve. In Fig. 8 GT selects the contents in diffi-
culty order skipping the unnecesary ones. The aver-
age sequence of the VPS, instead, is also with approx-
imately increasing difficulty but in an irregular way.
This is due to the error in the prediction performance.
In conclusion the proposed sequencer gains 63% over
RANGE and 150% over RND. The presented ex-

Algorithm 1: Vygotski Policy based Sequencer
Input: C, Y0 π, si, T

1 Train the MF using Y0;
2 for t = 1 to T do
3 for All c ∈ C do
4 Predict ŷ(c j,si) Eq. 6;
5 end
6 Find ct∗ according to Eq. 5;
7 Show ct∗ to si with Eq. 1;
8 Add y(si,ct∗) to Yt ;
9 Retrain the MF; // Corrects over- or

underestimation by the MF
10 end

periments show how the MF is able, without domain
information, to model the different skills of students
and contents and partially mimics the best sequence,
which is the one selected by GT in Fig. 8.

6.4 Advanced Experiments

In this section we want to show the correct working of
the sequencer changing the parameters of the scenario
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Figure 5: Policy selection, i.e. the performance of the Vy-
gotski policy with different yth at the same time step. Dif-
ferent groups of students learned with the Vygotski policy
with yth values going from 0.1 to 0.9. As shown in the figure
the knowledge levels change according to the yth selected.

nk and nc and later adding noise. In order to do so we
consider the percentage of gain of VPS with respect to
RANGE considering a specific time step t = 30 with
nk = 10 and nd = 6. As one can see in Fig. 10 the gain
obtained by the sequencer depends on the available
number of contents. Since in RANGE each second

Policy Description
Random (RND) Contents are selected randomly
In Range (RANGE) Each second content is selected

in difficulty order.
Ground Truth (GT) Selects the contents according

to which is the one maximizing
the learning.

Vygotski Policy based Chooses the next content using
Sequencer Ground Truth the policy and the real score of
(VPSGT) a student.
Vygotski Policy based Chooses the next content using
Sequencer (VPS) the policy and the predicted

score of a student.

Table 3: Baselines Description
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Figure 7: Average Total Knowledge. How the average
learning curve of the students changes over time.
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Figure 8: Average sequence selected by the GT and the
VPS. The VPS approximate the optimal sequence that GT
computes thanks to the real skills of the students.

content is selected, with nc < 60 there are not enough
contents for all time steps. Our sequencer can adapt
without problems to the situation. The optimal point
for the in range policy is when nc = 60 because there
is exactly the necessary number of contents for the
student to learn. When nc > 60 the students see many
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Figure 9: Gain over RANGE policy varying nk. The gain is
measured at a specific time step in percentage, considering
the average knowledge level of the two groups of students,
one practicing with the RANGE sequencer and one with the
VPS.
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Figure 10: Gain over RANGE policy varying nc. The gain
is measured at a specific time step in percentage, consider-
ing the average knowledge level of the two groups of stu-
dents, one practicing with the RANGE sequencer and one
with the VPS.

unnecessary contents and consequently learn slower.
Fig. 9 with nc = 60, t = 30 and nd = 6 shows the de-
pendencies between skills and gain. The experiments
demonstrated a high adaptability of the sequencer to
the different scenarios.
Last we experimented the results robustness adding
noise, i.e. ỹ = yε. We experimented with σ2 ∈ [0,0.5].
As one can see in Fig. 11 with σ2 = 0.1 the Vygotski
sequencers are still able to produce a correct learning
sequence but more time is required. The VPSGT is
the one that suffered the most from the introduction
of noise, probably related to the selection of yth.

7 CONCLUSIONS

In this paper we presented VPS, a sequencer
based on performance prediction and Vygotski con-
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Figure 11: Effect of noise in the simulated learning process.
Beta distribution noise with σ2 = 0.1.

cept of ZPD for multiple skills contents with contin-
uous knowledge and performance representation. We
showed that MF is able dealing with the most actual
problems of Intelligent Tutoring Systems, like time
and personalization, retrieving automatically skills re-
quired and difficulty. We proposed VP, a perfor-
mance based policy that does not require direct in-
put of domain information, and a student simulator
that partially overcomes the problem of massive test-
ing with real students. The designed system achieved
time gain over random and in range policy in almost
each scenario and is robust to noise. This demon-
strates how the sequencer could solve many engineer-
ing/authoring efforts. Nevertheless, an experiment
with real students is required to better confirm the
validity of the assumptions of the simulated learning
process. A different evaluation is required for the per-
formance prediction based sequencer. Since MF was
already tested on real data, the main risk, in this case,
is represented by the VP, which requires the tuning
of the threshold score yth on real students. Another
minor risk, the over- or underestimation of the stu-
dent’s parameters by the performance predictor, was
already addressed in (Koedinger et al., 2011) and is
minimized here by retraining the model. In conclu-
sion, to use VPS, no further analysis are required,
since the MF will reconstruct the domain information,
thanks to continuous score representation. The ex-
ploitation of performance predictors able to deal with
continuous scores and knowledge representation are
the future of adaptive ITS. With the results obtained
in this paper we plan to extend such an approach also
to other intervention strategies to further reduce the
engineering efforts in ITS.
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